

Creation of a Computerized Interface to Control a Deposition System Subset Using

LabVIEW and FieldPoint

Eduardo Moutinho
Energy Research Undergraduate Laboratory Fellowship Program

Colorado School of Mines
National Renewable Energy Laboratory

Golden, CO, 80401

August 15, 2002

Prepared in partial fulfillment of the requirements of the ERULF Program at the
National Renewable Energy Laboratory.

Participant:

Signature

Research Advisor:

Signature

Research Advisor:

Signature

 1

Introduction

In the field of renewable energy, computers control many different tasks and

processes. Methods and processes are being updated and improved continually as new

technologies emerge. LabVIEW is one of these technologies. Basically, LabVIEW is a

graphically based programming language developed by National Instruments that is

primarily used with process equipment. Because of its graphical backbone, LabVIEW is

easier to use than the most text-based programming languages (Figure 1). This allows for

programs to be developed quickly. Also, concepts such as debugging, troubleshooting,

and layouts are easier to execute with LabVIEW’s interface.

The National Renewable Energy Laboratory (NREL) is one of the several

laboratories around the nation that are using LabVIEW to facilitate the use of process

equipment. Specifically, Dr. David Albin, Dr. Ramesh Dhere, and I are using LabVIEW

to automate a subset of the 3M process control system. This specific subset involves the

pump-down procedure, in which specific valves are opened in sequence to bring the

equipment to the desired pressure (Figure 2). This procedure also involves activating

cooling water distribution and power to the system.

The program will be tested with a protoboard containing light-emitting diode

(LED) lights, switches, and voltage sources to emulate the valves and switches of the 3M

deposition system. The communication from the PC to the protoboard will be done via

FieldPoint modules. FieldPoint is a system developed by National Instruments to allow

LabVIEW to communicate with outside sources (Figure 3). Different FieldPoint modules

work with different devices. We will be using modules designed for use with

thermocouples and analog/digital sources.

 2

By creating such a program, we will lay the foundation for the creation of a

completely computerized interface for the 3M deposition equipment. A LabVIEW-based

interface will permit for easy automation of the equipment. The basic deposition process

can be done with a simple series of mouse-clicks. This eliminates the need for the

scientist using the machine to manually conduct the sequences using its actual

switchboard. This switchboard will be replaced with a virtual one on the PC that can still

be manually controlled. But the machine will rarely be operated by manual control, since

the automated procedure will be available. This saves the scientist time and effort, and

greatly reduces the possibility of human error.

Materials and Methods

Tools Used to Develop the Software

 The majority of this project was conducted on a Pentium-class PC with

LabVIEW 6.1 installed. To familiarize myself with LabVIEW, I studied various manuals

and tutorials. For the most part, I focused on the LabVIEW Basics series of tutorials

written by National Instruments. These tutorials guided me on how to implement

concepts such as loops and case structures. These concepts encompass the bulk of the

final program that my project is based upon.

 In addition to the office PC, I used another Pentium-class PC inside the

laboratory. This laboratory PC acted as a test-bed for the final program (Figure 4). A

series of FieldPoint modules mounted on din rails were connected to the PC via an

Ethernet crossover cable. FieldPoint acts as a communication gateway between the PC

and whatever the LabVIEW software is supposed to control. Each FieldPoint module has

a specific model number and function. Our setup consisted of terminal bases for holding

 3

the modules in place, a unit to communicate with the computer, a thermocouple unit, a

digital input unit, an analog input unit, and a power supply unit.

The modules were connected to a simple protoboard wired to a series of LED

lights, toggle switches, and voltage dividers. The protoboard was used as a means of

emulating the actual 3M system subset. LED lights represented valves, toggle switches

represented switch closures, and the voltage dividers represented manometers. By using

the protoboard as an effective means of emulating the subset, we were able to effectively

test the program without having to hook it up to the actual system. Later in the project

development phase, the protoboard was replaced with a small box to house all of the LED

lights, voltage dividers, and switches. This was done for both aesthetic and practical

reasons. Therefore, the project was developed and completed using both the office and

laboratory computers. The office computer acted as the development base for the actual

software, while the laboratory computer acted as the test unit.

Planning the Software

 Before actual program development began, I met with my mentors to discuss

what the software should do in general. During the meeting we diagrammed the basic

layout of the 3M system subset, and we talked about the tasks that the program was

required to do. By doing this, we were able to derive a statement of the project’s scope,

and specify individual tasks. Next, we began to discuss what kind of methods I would use

to develop the actual program. We thought of using while (continuous) loops and

Boolean (true or false) ideology. Sequence structures were also brought up as a

possibility. We also created a possible layout, which helped me to visualize what the code

for the program might look like.

 4

After this meeting, I met with Dr. Dhere to observe a simulation of the subset

using the 3M process equipment. Dr. Dhere showed me the actual switchboard on the

equipment and how it was used to pump the system down.

LabVIEW

 The LabVIEW programming language consists of two main parts: the front panel

and the block diagram (Figure 1). The front panel represents the aesthetic viewpoint of

the programming, since it is used to build and design the interface of the program. The

front panel portion of the programming is the simplest part. Basically, to build an

interface, the programmer right clicks on any empty portion of the panel, selects what is

wanted from a menu, and drags the icons onto a screen. A wide variety of options are

available, such as thermometers, graph generators, switches, and indicators. After the

interface for the program has been completed, the block diagram portion of the

programming goes into effect.

 The block diagram is where the programming aspect of LabVIEW is

implemented. Without the block diagram, the program will not function. Instead of

writing various lines of code to connect objects on the program interface together, the

programmer uses virtual “wires.” Icons with inputs represent the objects on the diagram.

These inputs are then “wired” to other objects. As in text-based programming, loops, case

structures, Boolean ideology, and arrays are available. The programmer creates loops and

case structures by making boxes around the icons that are to be placed within them. This

method of programming allows software to be developed quickly and modified easily.

Creating a while loop within a case structure within a while loop in LabVIEW takes only

 5

seconds, in comparison to the more tedious and time-consuming method of writing it out

in a text-based language.

Software Development

In the beginning stages of development, I focused on learning how to make the

laboratory PC communicate with the LED lights connected to the protoboard. Although

this was a simple goal, it proved to be a somewhat difficult task. In addition to

developing the actual code to make a light turn on and off, which was relatively simple,

the FieldPoint modules had to be detected and configured by the computer. This was

done using a program called FieldPoint Explorer, also developed by National

Instruments. With Explorer, I was able to detect the FieldPoint modules and their inputs.

Also, I was able to change the names of each input to reflect what they were connected

to. So I renamed certain inputs to “LED 1,” “LED 2,” and so forth. This allowed tags to

be created more easily within LabVIEW, since the devices and inputs had to be tagged

within the code for the program to know the virtual addresses of the hardware, allowing

for communication to occur between both mediums.

The initial LED test worked, yet there was a significant delay between the

computer and the protoboard. When the switch within the program was activated, the

light turned on two seconds later. This was perplexing, since the code was extremely

simple. To remedy the problem, my mentors contacted Paul Sweat of National

Instruments to help with the situation. He not only alleviated the issue with the delay, he

also provided guidance in developing the final program.

When the LED test was completed and all the FieldPoint modules were detected

and operational, I proceeded to work on the final program. I decided to use state

 6

machines to formulate it. A state machine is a programming concept that involves using

case structures within while loops to create an event-based program. This means that the

user can define what the program does by pushing a button, or a series of buttons. There

is little to no dependence on forced sequences over which the user has little control

(National Instruments LabVIEW Development Library). The National Instruments

LabVIEW Support Database states that “almost all programs that have more than a

rudimentary user interface are state machines--they wait for user input, which can be any

number of possible values, and then take appropriate actions based on this input”

(National Instruments LabVIEW Development Library). The program’s manual interface

would require the use of switches, which in essence are buttons. These switches would be

activated by a user in whatever order they chose. Also, the program’s sequence mode

would be a user-activated one, triggered by a button. Therefore, the state machine

concept turned out to be a perfect method to use in the development of the program.

Results

Manual Switchboard

Using the aforementioned methods, we created a final program that works well.

The manual switchboard worked flawlessly after some modification. The first version of

the manual switchboard would lock up after an interlock failure, leaving whatever was

activated still activated. This was an inaccurate depiction of what the program was

required to do. However, after some simple modifications were made to the code, the

problem was solved.

 7

Sequence Mode

 The sequence portion of the program proved to work well, after a lengthy set of

modifications. The state machine concept proved to be a viable method of implementing

a user-initiated sequence. The first version of the sequence mode did not function because

of inconsistencies with the Boolean ideology. Case structures were not being activated at

appropriate times, because the signals were not reaching their intended locations. After

the problem with the Boolean inputs was fixed, the program continued to have problems

functioning correctly. The actual case structure that housed the sequence was not

proceeding from step to step. By using the debugging tool in LabVIEW, which basically

slows the program down and uses many dots to show where each signal is going, I was

able to see the problem. The targets connecting each case (step) were inconsistent,

causing the program to get confused. The targets were fixed, however, new problems

arose.

 The lights representing the valves were illuminating in order, yet they were not

accurately representing the sequence. This presented the biggest challenge since I knew

how to fix the problem but not how to actually code it with LabVIEW. I wanted to use

the same input in two different locations, and I was not sure how to do that. This forced

me to do some searching on my own to find the answer.

Fortunately, I found the solution to my problem. I used local variables to

represent inputs at more than one location. This allowed me to use the same input in

different cases, which facilitated emulating the exact sequence I desired. Still, challenges

continued to present themselves. The lights would illuminate immediately without

waiting for the correct conditions to be met. This was quite a daunting predicament. This

 8

problem was solved by using while loops around the objects that represented the lights.

By having a while loop at those locations, the program would reach that specific juncture

and then wait for the correct conditions to be met. When all of these challenges were

successfully dealt with, I was able to get the correct sequence to work within the

program.

 Nevertheless, a few additional problems remain. For example, the interlock check

within the sequence is a lot more difficult to implement because of the event-driven

nature of the code. Therefore, when the program is waiting for a condition to be met, it is

constantly looping a small section of it. This section does not have an interlock check

within it. Theoretically, if an interlock error were to occur, the program would not pick it

up at that juncture.

In addition, the user-interface could be improved. At the moment, there is a toggle

switch between manual and sequence mode. You cannot switch the toggle from manual

to sequence or vice versa if you are running the program. To switch between the two

modes, you have to shut down the program and switch while it is stagnant. The program

works well, but this task is a bit tedious.

Discussion and Conclusion

 The main goals for creating a program to emulate a subset of the 3M system were

met. The program does exactly what it is supposed to in an efficient manner. Manual

control is flawless, while the sequence mode shows that a process can be automated using

LabVIEW. In a matter of ten weeks, I was able to learn the LabVIEW programming

language, establish a connection between a PC and an outside source by using FieldPoint,

and create a program to emulate a subset of the 3M process equipment. This shows that

 9

LabVIEW is indeed a powerful and easy-to-learn tool that can be used effectively in the

field of process control.

 Throughout the program development period, I was required to make various

modifications to the code. I was asked to add things to the program quickly and modify

complex structures, such as the main sequence. With LabVIEW, I was able to do these

things with incredible ease. LabVIEW’s graphical environment makes it easy to make

changes. Also, the graphical layout simplified the troubleshooting process, as I was able

to see where each signal went within the program, by using the debugging mode.

 With more time, it might be possible to fix some of the unsatisfactory features.

These include the interlock problem with the sequence mode and the problem associated

with switching between the manual and sequence modes. I have some ideas about how to

fix these problems. For example, I believe the interlock problem can be fixed by

developing a sub-VI (subroutine) to act as an interlock check. That way, the user can run

multiple sub-VIs within the code making sure that the interlocks are being checked at

every possible juncture. Nevertheless, these problems are relatively small. The program

accurately simulates manual control, and the sequence works to exact specifications.

 The software that I developed represents the first step in a long process to fully

automate the 3M process system with LabVIEW. Although I have emulated only a small

subset of the system, expanding the software to encompass the entire equipment will be

relatively simple. This is so because the subset involved most of the devices that will

have to be controlled. Developing the final software for the system will be similar to

creating the software I worked on, only on a larger scale.

 10

Acknowledgements

 First and foremost, I would like to thank Dr. David Albin and Dr. Ramesh Dhere

for being my mentors. They helped me tremendously throughout each phase of this

project. Without them, I would not have been able to successfully conduct the project.

Also, I’d like to acknowledge Paul Sweat, Matthew Page, and Marc Landry for helping

me get a firm grasp on LabVIEW and FieldPoint. Next, I would like to thank NREL, the

ERULF program, and the United States Department of Energy for providing me with this

opportunity to work at a national laboratory with an excellent staff. Last and not least, I’d

like to acknowledge the people who run the ERULF program at NREL. These people

include Linda Lung, Patrisia Navarro, and Wilbur Sameshima for all their contributions.

This summer has provided me with wonderful experiences that have helped me develop

as a young adult, and I cannot give enough thanks for that.

 11

References

National Instruments LabVIEW Development Library. Using a State Machine

(Event Driven) Architecture. Retrieved Jul. 3, from National Instruments
LabVIEW Website:
http://zone.ni.com/devzone/taskdoc.nsf/2d17d611efb58b22862567a9006ffe76/8c
4eecacf084f8e986256802007b9186?OpenDocument.

 12

Figures

Example of LabVIEW Software Interface

Front Panel (Left) and Block Diagram (Right)

Figure 1

 13

Layout of 3M System Subset

Figure 2

 14

FieldPoint Modules in Test Bed Setup

Figure 3

 15

Test Bed with FieldPoint Modules, Protoboard, and PC

Figure 4

 16

	Creation of a Computerized Interface to Control a Deposition System Subset Using LabVIEW and FieldPoint
	Eduardo Moutinho
	Energy Research Undergraduate Laboratory Fellowship Program�Colorado School of Mines
	National Renewable Energy Laboratory
	Golden, CO, 80401
	August 15, 2002
	Prepared in partial fulfillment of the requirements of the ERULF Program at the National Renewable Energy Laboratory.
	Participant:
	Signature
	Research Advisor:
	Signature
	Research Advisor:
	Signature
	In the field of renewable energy, computers control many different tasks and processes. Methods and processes are being updated and improved continually as new technologies emerge. LabVIEW is one of these technologies. Basically, LabVIEW is a graphically
	The National Renewable Energy Laboratory (NREL) is one of the several laboratories around the nation that are using LabVIEW to facilitate the use of process equipment. Specifically, Dr. David Albin, Dr. Ramesh Dhere, and I are using LabVIEW to automate
	The program will be tested with a protoboard containing light-emitting diode (LED) lights, switches, and voltage sources to emulate the valves and switches of the 3M deposition system. The communication from the PC to the protoboard will be done via Fi
	By creating such a program, we will lay the foundation for the creation of a completely computerized interface for the 3M deposition equipment. A LabVIEW-based interface will permit for easy automation of the equipment. The basic deposition process can b
	Materials and Methods
	Tools Used to Develop the Software
	The majority of this project was conducted on a Pentium-class PC with LabVIEW 6.1 installed. To familiarize myself with LabVIEW, I studied various manuals and tutorials. For the most part, I focused on the LabVIEW Basics series of tutorials written by Na
	In addition to the office PC, I used another Pentium-class PC inside the laboratory. This laboratory PC acted as a test-bed for the final program (Figure 4). A series of FieldPoint modules mounted on din rails were connected to the PC via an Ethernet c
	The modules were connected to a simple protoboard wired to a series of LED lights, toggle switches, and voltage dividers. The protoboard was used as a means of emulating the actual 3M system subset. LED lights represented valves, toggle switches represen
	Before actual program development began, I met with my mentors to discuss what the software should do in general. During the meeting we diagrammed the basic layout of the 3M system subset, and we talked about the tasks that the program was required to do
	After this meeting, I met with Dr. Dhere to observe a simulation of the subset using the 3M process equipment. Dr. Dhere showed me the actual switchboard on the equipment and how it was used to pump the system down.
	The LabVIEW programming language consists of two main parts: the front panel and the block diagram (Figure 1). The front panel represents the aesthetic viewpoint of the programming, since it is used to build and design the interface of the program. The
	The block diagram is where the programming aspect of LabVIEW is implemented. Without the block diagram, the program will not function. Instead of writing various lines of code to connect objects on the program interface together, the programmer uses virt
	In the beginning stages of development, I focused on learning how to make the laboratory PC communicate with the LED lights connected to the protoboard. Although this was a simple goal, it proved to be a somewhat difficult task. In addition to developing
	The initial LED test worked, yet there was a significant delay between the computer and the protoboard. When the switch within the program was activated, the light turned on two seconds later. This was perplexing, since the code was extremely simple. To
	When the LED test was completed and all the FieldPoint modules were detected and operational, I proceeded to work on the final program. I decided to use state machines to formulate it. A state machine is a programming concept that involves using case str
	Manual Switchboard
	Using the aforementioned methods, we created a final program that works well. The manual switchboard worked flawlessly after some modification. The first version of the manual switchboard would lock up after an interlock failure, leaving whatever was act
	The sequence portion of the program proved to work well, after a lengthy set of modifications. The state machine concept proved to be a viable method of implementing a user-initiated sequence. The first version of the sequence mode did not function becau
	The lights representing the valves were illuminating in order, yet they were not accurately representing the sequence. This presented the biggest challenge since I knew how to fix the problem but not how to actually code it with LabVIEW. I wanted to use
	Fortunately, I found the solution to my problem. I used local variables to represent inputs at more than one location. This allowed me to use the same input in different cases, which facilitated emulating the exact sequence I desired. Still, challenges c
	Nevertheless, a few additional problems remain. For example, the interlock check within the sequence is a lot more difficult to implement because of the event-driven nature of the code. Therefore, when the program is waiting for a condition to be met, it
	In addition, the user-interface could be improved. At the moment, there is a toggle switch between manual and sequence mode. You cannot switch the toggle from manual to sequence or vice versa if you are running the program. To switch between the two mode
	The main goals for creating a program to emulate a subset of the 3M system were met. The program does exactly what it is supposed to in an efficient manner. Manual control is flawless, while the sequence mode shows that a process can be automated using L
	Throughout the program development period, I was required to make various modifications to the code. I was asked to add things to the program quickly and modify complex structures, such as the main sequence. With LabVIEW, I was able to do these things wi
	With more time, it might be possible to fix some of the unsatisfactory features. These include the interlock problem with the sequence mode and the problem associated with switching between the manual and sequence modes. I have some ideas about how to fi
	The software that I developed represents the first step in a long process to fully automate the 3M process system with LabVIEW. Although I have emulated only a small subset of the system, expanding the software to encompass the entire equipment will be r
	First and foremost, I would like to thank Dr. Dav
	National Instruments LabVIEW Development Library. Using a State Machine
	(Event Driven) Architecture. Retrieved Jul. 3, from National Instruments LabVIEW Website:
	http://zone.ni.com/devzone/taskdoc.nsf/2d17d611efb58b22862567a9006ffe76/8c4eecacf084f8e986256802007b9186?OpenDocument.
	Example of LabVIEW Software Interface
	Front Panel (Left) and Block Diagram (Right)
	Figure 1
	Layout of 3M System Subset
	Figure 2
	FieldPoint Modules in Test Bed Setup
	Figure 3
	Test Bed with FieldPoint Modules, Protoboard, and PC
	Figure 4

